Caro Fernando (e demais colegas)
Gostaria de agradecer sua grande ajuda, mas preciso tirar mais outras dúvidas.
Abaixo está o código completo e a matriz dados que é base para os cálculos.
A saída que inseri é a coluna resultado [,1]
Porque não consigo calcular a média dos valores?
As saídas serão usadas como vetores (individualmente) em um outro procedimento para uso do pacote "sem" (Modelagem de equações estruturais).
Como tira as aspas, ou não tem nada a ver?
Porque aparecem valores 4500 e 3500 no meio dos calculados? (Não tem lógica)
setwd("C:/Dados")
dados <- read.table("Dados_Boot_txt.txt", h=T)
dados
> dados
X4 X5 X15 X6 X11 X12 X13 X16 X17 X18 X19 X20 X25 X26 X27 X29
1 3 4 3 2 3 4 4 2 3 3 3 5 3 4 3 3
2 2 5 5 5 3 5 5 4 5 4 5 4 4 3 5 3
3 4 5 4 3 5 5 5 4 5 6 6 5 4 4 5 4
4 2 6 4 4 2 6 6 4 4 3 6 6 3 4 4 2
5 4 3 1 3 1 4 5 3 3 1 3 1 2 1 2 1
6 5 5 6 5 5 6 6 6 5 5 6 4 5 5 5 4
7 1 7 4 5 7 6 7 5 4 5 5 3 4 4 7 6
8 5 7 6 5 4 6 6 3 7 5 4 3 5 7 5 6
9 5 6 4 3 5 5 5 4 4 4 3 2 2 5 2 5
10 3 6 2 5 5 6 6 6 4 4 5 5 2 2 6 3
11 2 2 3 2 2 4 4 4 3 4 5 4 5 3 4 3
12 2 3 2 2 3 2 5 3 2 4 5 2 4 5 3 2
13 7 7 4 3 3 6 7 6 6 6 6 6 4 4 6 5
14 5 7 6 6 7 6 6 7 7 6 5 5 3 4 6 6
15 3 6 5 6 5 6 6 5 6 6 5 5 4 4 6 6
16 1 2 1 4 1 5 2 2 3 6 5 4 1 2 1 1
17 4 5 2 4 3 4 3 5 5 4 3 3 2 4 3 4
18 5 6 5 5 3 5 5 6 7 6 6 5 4 3 6 6
19 4 3 5 3 1 5 4 2 3 4 4 5 1 4 2 5
20 3 3 3 4 4 3 4 2 2 3 3 3 2 3 1 2
mean(dados[,1])
> mean(dados[,1])
[1] 3.5
library(sem)
library(boot)
#Bootstrap (médias das replicações)
obs <- function(x){
results <- c()
for(i in 1:500){
results[i] <- mean(sample(dados,replace=T))
saida <- paste(results,i,sep="")
}
return(saida)
}
resultado<-apply(dados,2,obs)
resultado[,1]
> resultado[,1]
[1] "3.75500" "4.1500" "4.05500" "3.5500" "3.8500" "4.1500" "3.45500" "4.75500"
[9] "4.25500" "3.45500" "3.6500" "3.85500" "3.9500" "4.05500" "3.6500" "3.75500"
[17] "4.2500" "4.4500" "3.65500" "4.2500" "4500" "4.15500" "5.05500" "3.75500"
[25] "3.8500" "4.45500" "4.25500" "3.65500" "3.65500" "4.05500" "4.05500" "3.3500"
[33] "3.4500" "4.15500" "3.15500" "3.8500" "3.7500" "4.3500" "4500" "3.15500"
[41] "4.55500" "3.95500" "4.1500" "4.05500" "4.2500" "3.6500" "3.95500" "4.35500"
[49] "3.65500" "4.75500" "3.7500" "3.65500" "3.6500" "4.85500" "3.8500" "3.05500"
[57] "3.85500" "3.8500" "3.8500" "3.35500" "3.7500" "4.25500" "4.25500" "3.8500"
[65] "3.95500" "3.25500" "3.9500" "3.75500" "3.7500" "4.45500" "3.65500" "3.4500"
[73] "4500" "4500" "3.55500" "3.9500" "3.75500" "4.3500" "3.3500" "4.25500"
[81] "4.1500" "4.2500" "4.2500" "4.2500" "3.95500" "4.15500" "4.35500" "4.1500"
[89] "4.1500" "4.05500" "3.9500" "3.65500" "3.4500" "3.65500" "4.15500" "3.35500"
[97] "3.55500" "3.75500" "3.8500" "3.8500" "4.25500" "4.15500" "4500" "3.95500"
[105] "3.95500" "3.65500" "4.4500" "3.6500" "3.75500" "3.55500" "3.9500" "4.3500"
[113] "3.9500" "3.55500" "3.35500" "4.1500" "3.65500" "3.75500" "3.6500" "3.05500"
[121] "4500" "3.9500" "4.05500" "3.65500" "4.15500" "4.25500" "4500" "4.05500"
[129] "4.7500" "3.1500" "3.2500" "3.85500" "3.5500" "3.5500" "4.4500" "3.45500"
[137] "3.7500" "3.65500" "4.1500" "4.05500" "3.35500" "4.1500" "3.9500" "3.1500"
[145] "4.2500" "4.15500" "4.45500" "3.95500" "3.25500" "3.9500" "3.9500" "3.75500"
[153] "3.65500" "3.6500" "3.5500" "3.65500" "3.9500" "4.05500" "4.05500" "3.85500"
[161] "4.05500" "3.45500" "3.05500" "3.45500" "4.3500" "4.6500" "3.8500" "4.35500"
[169] "4.05500" "4.1500" "4.15500" "4.8500" "3.6500" "3.05500" "4500" "3.95500"
[177] "3.6500" "4.4500" "4.25500" "4.35500" "3.6500" "4.2500" "3.9500" "4.55500"
[185] "3.9500" "4.3500" "4.15500" "3.35500" "3.6500" "3.9500" "3.85500" "3.45500"
[193] "3.65500" "3.45500" "3.7500" "3.45500" "4.3500" "3.7500" "3.4500" "3.55500"
[201] "3.75500" "3.85500" "3.8500" "4.65500" "3.8500" "3.6500" "3.7500" "3.45500"
[209] "3.65500" "4.2500" "3.5500" "3.75500" "4.4500" "3.8500" "3.45500" "3.5500"
[217] "4.5500" "4.1500" "3.85500" "3.6500" "3.15500" "4.55500" "3.5500" "3.65500"
[225] "3.8500" "4500" "4.15500" "3.65500" "3.35500" "3.5500" "3.45500" "3.65500"
[233] "3.5500" "4.1500" "3.5500" "4.15500" "4.15500" "4.15500" "4.2500" "4.05500"
[241] "4.15500" "3.8500" "3.85500" "4.05500" "4.1500" "3.75500" "3.75500" "3.9500"
[249] "3.25500" "4.15500" "3.85500" "4.25500" "4500" "3.9500" "4.15500" "4500"
[257] "3.9500" "3.95500" "4500" "4.1500" "3.8500" "4.5500" "4.4500" "3.9500"
[265] "3.95500" "4.4500" "3.65500" "3.5500" "4500" "3.8500" "3.4500" "4.2500"
[273] "3.05500" "3.6500" "3.6500" "4.2500" "3.4500" "3.55500" "4.25500" "3.95500"
[281] "3.4500" "3.9500" "4500" "4.05500" "3.75500" "3.85500" "3.95500" "4.3500"
[289] "3.1500" "4.35500" "3.75500" "3.25500" "3.95500" "3.65500" "3.75500" "4.45500"
[297] "4.2500" "4.2500" "3.8500" "4500" "3.3500" "4.3500" "3.6500" "4.25500"
[305] "3.45500" "3.65500" "5.05500" "4.1500" "3.85500" "4.1500" "3.8500" "3.65500"
[313] "3.55500" "4.05500" "3.45500" "3.8500" "4.15500" "3.3500" "3.85500" "4.45500"
[321] "4.05500" "3.8500" "3.6500" "4.65500" "3.95500" "3.55500" "3.7500" "3.95500"
[329] "3.8500" "3.7500" "3.55500" "3.95500" "3.55500" "3.15500" "4500" "3.35500"
[337] "4500" "4.2500" "3.85500" "3.6500" "3.8500" "3500" "4.2500" "3.55500"
[345] "3.8500" "4.25500" "3.5500" "3.85500" "3.8500" "3.25500" "3.65500" "4.4500"
[353] "4500" "3.6500" "4.4500" "3.3500" "4.45500" "4.25500" "4.05500" "3.45500"
[361] "4.3500" "3.85500" "4.15500" "3.65500" "3.55500" "4.3500" "3.9500" "4.4500"
[369] "4.15500" "4.15500" "3.85500" "4.25500" "3.7500" "3.8500" "4.2500" "3.35500"
[377] "3.2500" "3.8500" "4.2500" "3.95500" "3.85500" "3.25500" "4.35500" "3.1500"
[385] "3.7500" "3.35500" "4.1500" "4.15500" "3.85500" "4.55500" "3.65500" "3.75500"
[393] "3.8500" "3.25500" "3.2500" "3.5500" "3.75500" "3.45500" "4.65500" "4.15500"
[401] "3.25500" "4.1500" "4.3500" "4.2500" "3.4500" "3.9500" "4.6500" "4.05500"
[409] "4.35500" "3.55500" "3.8500" "3.8500" "3.55500" "3.8500" "3.7500" "4.05500"
[417] "3.65500" "3.55500" "3.5500" "4.15500" "3.75500" "3.6500" "3.85500" "3.3500"
[425] "3.85500" "2.95500" "3.85500" "4.45500" "3.85500" "3.45500" "3.65500" "4.1500"
[433] "3.6500" "3.9500" "3.8500" "3.15500" "3.65500" "3.4500" "3.5500" "4.25500"
[441] "4.2500" "4500" "3.6500" "3.6500" "3.25500" "4.25500" "3.95500" "3.1500"
[449] "4.2500" "3.15500" "3.65500" "4500" "3.4500" "4.55500" "4.1500" "4.5500"
[457] "3.75500" "3.85500" "4500" "3.85500" "4.55500" "3.6500" "4.1500" "4.3500"
[465] "4.05500" "3.7500" "3.95500" "3.55500" "3.1500" "3.95500" "3.85500" "3.3500"
[473] "3.95500" "4.25500" "3.95500" "4.1500" "4.05500" "4.25500" "3.75500" "4.3500"
[481] "4.3500" "4.3500" "4.7500" "4.45500" "2.9500" "3.5500" "3.6500" "3.55500"
[489] "4.4500" "4500" "3.4500" "3.5500" "3.45500" "3.35500" "4.65500" "4.3500"
[497] "3.8500" "4.3500" "3.95500" "3.65500"
mean(resultado[,1])
> mean(resultado[,1])
[1] NA
Warning message:
In mean.default(resultado[, 1]) :
argumento não é numérico nem lógico: retornando NA
Muito obrigado